|
旋转设备故障诊断、联邦学习、物理信息深度学习
1.Lu, H., Nemani, V.P., Barzegar, V., Allen, C., Hu, C., Laflamme, S., Sarkar, S. and Zimmerman, A.T., 2023. A physics-informed feature weighting method for bearing fault diagnostics. Mechanical Systems and Signal Processing, 191, p.110171.
2.Lu, H., Barzegar, V., Nemani, V.P., Hu, C., Laflamme, S. and Zimmerman, A.T., 2022. Joint training of a predictor network and a generative adversarial network for time series forecasting: A case study of bearing prognostics. Expert Systems with Applications, 203, p.117415
3.Nemani, V.P., Lu, H., Thelen, A., Hu, C. and Zimmerman, A.T., 2022. Ensembles of probabilistic LSTM predictors and correctors for bearing prognostics using industrial standards. Neurocomputing, 491, pp.575-596.
4.Shen, S., Lu, H., Sadoughi, M., Hu, C., Nemani, V., Thelen, A., Webster, K., Darr, M., Sidon, J. and Kenny, S., 2021. A physics-informed deep learning approach for bearing fault detection. Engineering Applications of Artificial Intelligence, 103, p.104295.